Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 51

Answer

$$ - \coth \frac{{{x^2}}}{2} + C$$

Work Step by Step

$$\eqalign{ & \int {x{\text{csc}}{{\text{h}}^2}\frac{{{x^2}}}{2}dx} \cr & {\text{Let }}u = \frac{{{x^2}}}{2},{\text{ }}du = xdx \cr & {\text{Substituting}} \cr & \int {x{\text{csc}}{{\text{h}}^2}\frac{{{x^2}}}{2}dx} = \int {x{\text{csc}}{{\text{h}}^2}u\left( {\frac{1}{x}} \right)du} \cr & = \int {{\text{csc}}{{\text{h}}^2}udu} \cr & {\text{Integrating }} \cr & = - \coth u + C \cr & {\text{Write in terms of }}x \cr & = - \coth \frac{{{x^2}}}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.