Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 47

Answer

$\displaystyle \frac{\cosh^{3}(x-1)}{3}+C$

Work Step by Step

Use Th.5.18, Derivatives and Integrals of Hyperbolic Functions $[\cosh u]^{\prime}=(\sinh u)u^{\prime}$ ---- $\displaystyle \int\cosh^{2}(x-1)\sinh(x-1)dx=\left[\begin{array}{lll} u=\cosh(x-1) & & \\ du=\sinh(x-1)dx. & & \end{array}\right]$ $=\displaystyle \int\underbrace{(\cosh^{2}(x-1))}_{u^{2}}\cdot\underbrace{(\sinh(x-1)dx}_{du}$ $=\displaystyle \frac{u^{3}}{3}+C$ $=\displaystyle \frac{\cosh^{3}(x-1)}{3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.