Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 48

Answer

$$ - \operatorname{sech} x + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sinh x}}{{1 + {{\sinh }^2}x}}dx} \cr & {\text{From the table of hyperbolic identities page 384}} \cr & {\text{cos}}{{\text{h}}^2}x - {\sinh ^2}x = 1{\text{ }} \to {\text{ }}{\sinh ^2}x = {\text{cos}}{{\text{h}}^2}x - 1 \cr & \int {\frac{{\sinh x}}{{1 + {{\sinh }^2}x}}dx} = \int {\frac{{\sinh x}}{{1 + {\text{cos}}{{\text{h}}^2}x - 1}}dx} \cr & = \int {\frac{{\sinh x}}{{{\text{cos}}{{\text{h}}^2}x}}dx} \cr & = \int {\left( {\frac{1}{{\cosh x}}} \right)\left( {\frac{{\sinh x}}{{{\text{cosh}}x}}} \right)dx} \cr & = \int {\operatorname{sech} x\tanh xdx} \cr & {\text{Integrating }} \cr & = - \operatorname{sech} x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.