Answer
$f^{\prime}(x)=\coth x$
Work Step by Step
Apply the Chain Rule and Th. 5.18:
Let $u$ be a differentiable function of $x$.
$\displaystyle \frac{d}{dx}[\sinh u]=(\cosh u)u^{\prime}$
---
$u(v(x))=\ln(\sinh x)$
$f^{\prime}(x)=\displaystyle \frac{d}{dx}[u(v(x))]=\frac{du}{dv}\cdot\frac{dv}{dx}$
$=\displaystyle \frac{1}{\sinh x}(\cosh x)$
$=\displaystyle \frac{\cosh x}{\sinh x}=\coth x$