Answer
$${\text{Relative minimum at }}\left( {0, - \frac{{{e^{ - 1}} + e}}{2}} \right)$$
Work Step by Step
$$\eqalign{
& f\left( x \right) = x\sinh \left( {x - 1} \right) - \cosh \left( {x - 1} \right) \cr
& {\text{*Calculate the first derivative}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {x\sinh \left( {x - 1} \right) - \cosh \left( {x - 1} \right)} \right] \cr
& f'\left( x \right) = x\cosh \left( {x - 1} \right) + \sinh \left( {x - 1} \right) - \sinh \left( {x - 1} \right) \cr
& f'\left( x \right) = x\cosh \left( {x - 1} \right) \cr
& {\text{Set }}f'\left( x \right) = 0 \cr
& x\cosh \left( {x - 1} \right) = 0 \cr
& \cosh \left( {x - 1} \right){\text{ is always positive, then}} \cr
& x = 0 \cr
& \cr
& *{\text{Calculate the second derivative}} \cr
& f''\left( x \right) = \frac{d}{{dx}}\left[ {f'\left( x \right)} \right] \cr
& f''\left( x \right) = \frac{d}{{dx}}\left[ {x\cosh \left( {x - 1} \right)} \right] \cr
& f''\left( x \right) = x\sinh \left( {x - 1} \right) + \cosh \left( {x - 1} \right) \cr
& \cr
& {\text{Evaluate the second derivative at }}x = 0 \cr
& *f''\left( 0 \right) = \left( 0 \right)\sinh \left( {0 - 1} \right) + \cosh \left( {0 - 1} \right) \cr
& f''\left( 0 \right) = \cosh \left( { - 1} \right) > 0 \cr
& {\text{Then by the second derivative test }}\left( {{\text{Theorem 3}}{\text{.9}}} \right) \cr
& f\left( x \right){\text{ has a relative minimum at }}\left( {0,f\left( 0 \right)} \right) \cr
& f\left( 0 \right) = 0\sinh \left( {0 - 1} \right) - \cosh \left( {0 - 1} \right) \cr
& f\left( 0 \right) = - \cosh \left( { - 1} \right) \cr
& f\left( 0 \right) = - \frac{{{e^{ - 1}} + {e^{ - \left( { - 1} \right)}}}}{2} \cr
& f\left( 0 \right) = - \frac{{{e^{ - 1}} + e}}{2} \cr
& {\text{Relative minimum at }}\left( {0, - \frac{{{e^{ - 1}} + e}}{2}} \right) \cr
& \cr
& {\text{Graph}} \cr} $$