Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 52

Answer

$$\frac{1}{3}{\left( {\operatorname{sech} x} \right)^3} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\operatorname{sech} }^3}x\tanh x} dx \cr & {\text{Split, recall that }}{a^m}{a^n} = {a^{m + n}} \cr & \int {{{\operatorname{sech} }^3}x\tanh x} dx = \int {{{\operatorname{sech} }^2}x\operatorname{sech} x\tanh x} dx \cr & {\text{Let }}u = \operatorname{sech} x,{\text{ }}du = \operatorname{sech} x\tanh xdx \cr & {\text{Substituting}} \cr & \int {{{\operatorname{sech} }^2}x\operatorname{sech} x\tanh x} dx = \int {{u^2}} du \cr & {\text{Integrating}} \cr & {\text{ = }}\frac{1}{3}{u^3} + C \cr & {\text{Write in terms of }}x \cr & = \frac{1}{3}{\left( {\operatorname{sech} x} \right)^3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.