Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 59

Answer

$$\frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & \int_0^{\sqrt 2 /4} {\frac{2}{{\sqrt {1 - 4{x^2}} }}} dx \cr & {\text{Let }}u = 2x,{\text{ }}du = 2dx,{\text{ }}dx = \frac{1}{2}du \cr & {\text{The new limits of integration are}} \cr & x = \sqrt 2 /4 \to u = \sqrt 2 /2 \cr & x = 0 \to u = 0 \cr & {\text{Substituting}} \cr & \int_0^{\sqrt 2 /4} {\frac{2}{{\sqrt {1 - 4{x^2}} }}} dx = \int_0^{\sqrt 2 /2} {\frac{2}{{\sqrt {1 - u} }}\left( {\frac{1}{2}} \right)} du \cr & = \int_0^{\sqrt 2 /2} {\frac{1}{{\sqrt {1 - u} }}} du \cr & {\text{Integrating}} \cr & = \left[ {{{\sin }^{ - 1}}u} \right]_0^{\sqrt 2 /2} \cr & = {\sin ^{ - 1}}\left( {\frac{{\sqrt 2 }}{2}} \right) - {\sin ^{ - 1}}\left( 0 \right) \cr & = \frac{\pi }{4} - 0 \cr & = \frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.