Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 26

Answer

$f^{\prime}(x)=(8x+3)\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}^{2}(4x^{2}+3x)$

Work Step by Step

Apply Th. 5.18: Let $u$ be a differentiable function of $x$. $\displaystyle \frac{d}{dx}[\tanh u]=(\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}^{2}u)u^{\prime}$ --- $\displaystyle \frac{d}{dx}\tanh(4x^{2}+3x)=\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}^{2}(4x^{2}+3x)[4x^{2}+3x]^{\prime}$ $=\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}^{2}(4x^{2}+3x)\cdot (8x+3)$ $f^{\prime}(x)=(8x+3)\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}^{2}(4x^{2}+3x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.