Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 55

Answer

$$\ln \left( {\frac{5}{4}} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^{\ln 2} {\tanh x} dx \cr & {\text{Use the hyperbolic identity }}\tanh x = \frac{{\sinh x}}{{\cosh x}} \cr & \int {\tanh x} dx = \int {\frac{{\sinh x}}{{\cosh x}}} dx \cr & {\text{Integrate by }}\int {\frac{{du}}{u}} = \ln \left| u \right| + C,{\text{ then}} \cr & \int {\frac{{\sinh x}}{{\cosh x}}} dx = \ln \left| {\cosh x} \right| + C \cr & {\text{Therefore,}} \cr & \int_0^{\ln 2} {\tanh x} dx = \left[ {\ln \left| {\cosh x} \right|} \right]_0^{\ln 2} \cr & {\text{Evaluating}} \cr & = \ln \left| {\cosh \left( {\ln 2} \right)} \right| - \ln \left| {\cosh \left( 0 \right)} \right| \cr & = \ln \left| {\frac{5}{4}} \right| - \ln \left| 1 \right| \cr & = \ln \left( {\frac{5}{4}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.