Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 45

Answer

$-\displaystyle \frac{1}{2}\cosh(1-2x)+C$

Work Step by Step

Use Th.5.18, Derivatives and Integrals of Hyperbolic Functions $\displaystyle \int\sinh udu=\cosh u+C$ ---- $\displaystyle \int\sinh(1-2x)dx=\left[\begin{array}{lll} u=1-2x & & \\ du=-2dx. & \Rightarrow & -\frac{1}{2}du=dx \end{array}\right]$ $=-\displaystyle \frac{1}{2}\int\sinh\underbrace{(1-2x)}_{u}\underbrace{(-2)dx}_{du}$ $=-\displaystyle \frac{1}{2}\cosh(1-2x)+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.