Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 31

Answer

$f^{\prime}(t)= {\rm sech} \ t$

Work Step by Step

Apply the Chain Rule and Th. 5.18:$\displaystyle \qquad \frac{d}{dt}[\sinh u]=(\cosh u)u^{\prime}$ $\displaystyle \frac{d}{du}[\arctan u]=\frac{1}{1+u^{2}}$ $f^{\prime}(t)=\displaystyle \frac{1}{1+\sinh^{2}t}(\cosh t)$ $=\displaystyle \frac{\cosh t}{\cosh^{2}t}$ $=\displaystyle \frac{1}{\cosh t}= {\rm sech} \ t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.