Answer
$f^{\prime}(t)= {\rm sech} \ t$
Work Step by Step
Apply the Chain Rule and
Th. 5.18:$\displaystyle \qquad \frac{d}{dt}[\sinh u]=(\cosh u)u^{\prime}$
$\displaystyle \frac{d}{du}[\arctan u]=\frac{1}{1+u^{2}}$
$f^{\prime}(t)=\displaystyle \frac{1}{1+\sinh^{2}t}(\cosh t)$
$=\displaystyle \frac{\cosh t}{\cosh^{2}t}$
$=\displaystyle \frac{1}{\cosh t}= {\rm sech} \ t$