Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 10

Answer

$\begin{align*} \displaystyle \sinh^{2}x&=(\displaystyle \frac{e^{x}-e^{-x}}{2})^{2}\\\\ & =\displaystyle \frac{e^{2x}-2+e^{-2x}}{4}\\\\ & =\displaystyle \frac{-2+(e^{2x}+e^{-2x})}{4} \tag{ $\frac{a+b}{4}=\frac{\frac{a+b}{2}}{2} $ } \\\\ &=\displaystyle \frac{\frac{-2}{2}+\frac{e^{2x}+e^{-2x}}{2}}{2} \\\\ &=\displaystyle \frac{-1+\cosh 2x}{2} \end{align*}$

Work Step by Step

Definitions of the Hyperbolic Functions $\displaystyle \sinh x=\frac{e^{x}-e^{-x}}{2} \qquad \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}},\quad x\neq 0$ $\displaystyle \cosh x=\frac{e^{x}+e^{-x}}{2} \qquad \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{h}\ x=\displaystyle \frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$ ---- $\begin{align*} \displaystyle \sinh^{2}x&=(\displaystyle \frac{e^{x}-e^{-x}}{2})^{2}\\\\ & =\displaystyle \frac{e^{2x}-2+e^{-2x}}{4}\\\\ & =\displaystyle \frac{-2+(e^{2x}+e^{-2x})}{4} \tag{ $\frac{a+b}{4}=\frac{\frac{a+b}{2}}{2} $ } \\\\ &=\displaystyle \frac{\frac{-2}{2}+\frac{e^{2x}+e^{-2x}}{2}}{2} \\\\ &=\displaystyle \frac{-1+\cosh 2x}{2} \end{align*}$ So, $\displaystyle \qquad \sinh^{2}x=\frac{-1+\cosh 2x}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.