Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 58

Answer

$${\sin ^{ - 1}}\left( {\frac{4}{5}} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^4 {\frac{1}{{\sqrt {25 - {x^2}} }}} dx \cr & {\text{From the formula }}\int {\frac{{du}}{{\sqrt {{a^2} - {u^2}} }}} = {\sin ^{ - 1}}\left( {\frac{u}{a}} \right) + C,{\text{ then}} \cr & \int_0^4 {\frac{1}{{\sqrt {25 - {x^2}} }}} dx = \left[ {{{\sin }^{ - 1}}\left( {\frac{x}{5}} \right)} \right]_0^4 \cr & {\text{Evaluating}} \cr & = {\sin ^{ - 1}}\left( {\frac{4}{5}} \right) - {\sin ^{ - 1}}\left( {\frac{0}{5}} \right) \cr & {\text{Simplifying}} \cr & = {\sin ^{ - 1}}\left( {\frac{4}{5}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.