Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - 5.8 Exercises - Page 390: 29

Answer

$h^{\prime}(x)=\sinh^{2}x$

Work Step by Step

Apply Th. 5.18:$\displaystyle \qquad \frac{d}{dx}[\sinh u]=(\cosh u)u^{\prime}$ $h(x)=\displaystyle \frac{1}{4}\sinh 2x-\frac{x}{2}$ $h^{\prime}(x)=\displaystyle \cosh(2x)\cdot\frac{1}{2}-\frac{1}{2}$ $=\displaystyle \frac{\cosh(2x)-1}{2}$ ...Apply the identity$\displaystyle \qquad\sinh^{2}x=\frac{-1+\cosh 2x}{2}$ $h^{\prime}(x)=\sinh^{2}x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.