Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 77

Answer

$\left\{-\sqrt[3]{5},-\dfrac{\sqrt[3]{4}}{2}\right\}$

Work Step by Step

Using factoring of trinomials, the given equation, $ 2m^6+11m^3+5=0 ,$ is equivalent to \begin{align*} (m^3+5)(2m^3+1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} m^3+5=0 & 2m^3+1=0 \\ m^3=-5 & 2m^3=-1 \\\\ & m^3=-\dfrac{1}{2} .\end{array} Taking the cube root of both sides and then rationalizing the denominator (when necessary), the equations above are equivalent to \begin{array}{l|r} m=\sqrt[3]{-5} & m=\sqrt[3]{-\dfrac{1}{2}} \\\\ m=\sqrt[3]{-1\cdot5}& m=\sqrt[3]{-\dfrac{1}{2}\cdot\dfrac{4}{4}} \\\\ m=\sqrt[3]{-1}\cdot\sqrt[3]{5}& m=\sqrt[3]{-\dfrac{1}{8}\cdot4} \\\\ m=-\sqrt[3]{5}& m=-\dfrac{\sqrt[3]{4}}{2} .\end{array} Hence, the real solutions of the equation $ 2m^6+11m^3+5=0 $ is the set $ \left\{-\sqrt[3]{5},-\dfrac{\sqrt[3]{4}}{2}\right\} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.