Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 66

Answer

$\left\{-\dfrac{64}{27},-1,1,\dfrac{64}{27}\right\}$

Work Step by Step

Let $z= t^{2/3} $. Then the given equation, $ 9t^{4/3}-25t^{2/3}+16=0 ,$ is equivalent to \begin{align*} 9\left(t^{2/3}\right)^2-25t^{2/3}+16&=0 \\ 9z^2-25z+16&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-1)(9z-16)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-1=0 & 9z-16=0 \\ z=1 & 9z=16 \\\\ & z=\dfrac{16}{9} .\end{array} Since $z= t^{2/3} ,$ by back substitution, then \begin{array}{l|r} t^{2/3}=1 & t^{2/3}=\dfrac{16}{9} \\\\ \left(t^{\frac{2}{3}}\right)^3=(1)^3 & \left(t^{\frac{2}{3}}\right)^3=\left(\dfrac{16}{9}\right)^3 \\\\ t^2=1 & t^2=\dfrac{4096}{729} \\\\ t=\pm\sqrt{1} & t=\pm\sqrt{\dfrac{4096}{729}} \\\\ t=\pm1 & t=\pm\dfrac{64}{27} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }t=\pm1: & \text{If }t=\pm\dfrac{64}{27} \\\\ 9(\pm1)^{4/3}-25(\pm1)^{2/3}+16\overset{?}=0 & 9\left(\pm\dfrac{64}{27}\right)^{4/3}-25\left(\pm\dfrac{64}{27}\right)^{2/3}+16\overset{?}=0 \\\\ 9\left(\sqrt[3]{\pm1}\right)^4-25\left(\sqrt[3]{\pm1}\right)^2+16\overset{?}=0 & 9\left(\sqrt[3]{\pm\dfrac{64}{27}}\right)^4-25\left(\sqrt[3]{\pm\dfrac{64}{27}}\right)^2+16\overset{?}=0 \\\\ 9\left(\pm1\right)^4-25\left(\pm1\right)^2+16\overset{?}=0 & 9\left(\pm\dfrac{4}{3}\right)^4-25\left(\pm\dfrac{4}{3}\right)^2+16\overset{?}=0 \\\\ 9\left(1\right)-25\left(1\right)+16\overset{?}=0 & 9\left(\dfrac{256}{81}\right)-25\left(\dfrac{16}{9}\right)+16\overset{?}=0 \\\\ 9-25+16\overset{?}=0 & \dfrac{256}{9}-\dfrac{400}{9}+16\overset{?}=0 \\\\ 0\overset{\checkmark}=0 & -\dfrac{144}{9}+16\overset{?}=0 \\\\ & -16+16\overset{?}=0 \\ & 0\overset{\checkmark}=0 .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ 9t^{4/3}-25t^{2/3}+16=0 $ is $\left\{-\dfrac{64}{27},-1,1,\dfrac{64}{27}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.