Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 62

Answer

$\left\{-1,27\right\}$

Work Step by Step

Let $z= x^{1/3} $. Then the given equation, $ x^{2/3}-2x^{1/3}-3=0 ,$ is equivalent to \begin{align*} \left(x^{1/3}\right)^2-2x^{1/3}-3=0 \\ z^2-2z-3=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-3)(z+1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-3=0 & z+1=0 \\ z=3 & z=-1 .\end{array} Since $z= x^{1/3} ,$ by back substitution, then \begin{array}{l|r} x^{1/3}=3 & x^{1/3}=-1 \\ \left(x^{1/3}\right)^3=(3)^3 & \left(x^{1/3}\right)^3=(-1)^3 \\ x=27 & x=-1 .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=27: & \text{If }x=-1 \\\\ 27^{2/3}-2(27)^{1/3}-3\overset{?}=0 & (-1)^{2/3}-2(-1)^{1/3}-3\overset{?}=0 \\ \left(\sqrt[3]{27}\right)^2-2\left(\sqrt[3]{27}\right)^1-3\overset{?}=0 & \left(\sqrt[3]{-1}\right)^2-2\left(\sqrt[3]{-1}\right)^1-3\overset{?}=0 \\ \left(3\right)^2-2\left(3\right)^1-3\overset{?}=0 & \left(-1\right)^2-2\left(-1\right)^1-3\overset{?}=0 \\ 9-6-3\overset{?}=0 & 1+2-3\overset{?}=0 \\ 0\overset{\checkmark}=0 & 0\overset{\checkmark}=0 .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ x^{2/3}-2x^{1/3}-3=0 $ is $\left\{-1,27\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.