Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 74

Answer

$m=8$

Work Step by Step

Squaring both sides, the given equation, $ \sqrt{m+1}=-1+\sqrt{2m} ,$ is equivalent to \begin{align*} \left(\sqrt{m+1}\right)^2&=\left(-1+\sqrt{2m}\right)^2 \\ m+1&=(-1)+2(-1)(\sqrt{2m})+(\sqrt{2m})^2 &(\text{use }(a+b)^2=a^2+2ab+b^2) \\ m+1&=1-2\sqrt{2m}+2m \\ 2\sqrt{2m}&=(2m-m)+(1-1) \\ 2\sqrt{2m}&=m .\end{align*} Squaring both sides again, the equation above is equivalent to \begin{align*} \left(2\sqrt{2m}\right)^2&=(m)^2 \\ 4(2m)&=m^2 \\ 8m&=m^2 \\ 0&=m^2-8m \\ m^2-8m&=0 .\end{align*} Factoring the $GCF=m$, the equation above is equivalent to \begin{align*} m(m-8)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} m=0 & m-8=0 \\ & m=8 .\end{array} Checking by substituting the solutions in the given equation results to \begin{array}{l|r} \text{If }m=0: & \text{If }m=8: \\\\ \sqrt{0+1}\overset{?}=-1+\sqrt{2(0)} & \sqrt{8+1}\overset{?}=-1+\sqrt{2(8)} \\ \sqrt{1}\overset{?}=-1+\sqrt{0} & \sqrt{9}\overset{?}=-1+\sqrt{16} \\ \sqrt{1}\overset{?}=-1+0 & 3\overset{?}=-1+4 \\ 1\ne-1 & 3\overset{\checkmark}=3 .\end{array} Since $m=0$ does not satisfy the original equation then the only solution of the equation $ \sqrt{m+1}=-1+\sqrt{2m} $ is $m=8$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.