Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 54

Answer

$\left\{-\dfrac{4}{3},-1,1,\dfrac{4}{3}\right\}$

Work Step by Step

Using factoring of trinomials, the given equation, $ 9x^4-25x^2+16=0 ,$ is equivalent to \begin{align*} (9x^2-16)(x^2-1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 9x^2-16=0 & x^2-1=0 \\ 9x^2=16 & x^2=1 \\\\ x^2=\dfrac{16}{9} & x=\pm\sqrt{1} \\\\ x=\pm\sqrt{\dfrac{16}{9}} & x=\pm1 \\\\ x=\pm\dfrac{4}{3} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=\pm\dfrac{4}{3}: & \text{If }x=\pm1 \\\\ 9\left(\pm\dfrac{4}{3}\right)^4-25\left(\pm\dfrac{4}{3}\right)^2+16\overset{?}=0 & 9(\pm1)^4-25(\pm1)^2+16\overset{?}=0 \\\\ 9\left(\dfrac{256}{81}\right)-25\left(\dfrac{16}{9}\right)+16\overset{?}=0 & 9(1)-25(1)+16\overset{?}=0 \\\\ \dfrac{256}{9}-\dfrac{400}{9}+16\overset{?}=0 & 9-25+16\overset{?}=0 \\\\ \dfrac{256}{9}-\dfrac{400}{9}+\dfrac{144}{9}\overset{?}=0 & -16+16\overset{?}=0 \\\\ -\dfrac{144}{9}+\dfrac{144}{9}\overset{?}=0 & 0\overset{\checkmark}=0 \\\\ 0\overset{?}=0 & .\end{array} Since both solutions satisfy the original equation, then the solution set of the equation $ 9x^4-25x^2+16=0 $ is $\left\{-\dfrac{4}{3},-1,1,\dfrac{4}{3}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.