Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 40

Answer

$\left\{1,4\right\}$

Work Step by Step

Squaring both sides of the given equation, $ z=\sqrt{5z-4} ,$ results to \begin{align*}\require{cancel} (z)^2&=\left(\sqrt{5z-4}\right)^2 \\ z^2&=5z-4 \\ z^2-5z+4&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-4)(z-1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-4=0 & z-1=0 \\ z=4 & z=1 .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }z=4: & \text{If }z=1: \\\\ 4\overset{?}=\sqrt{5(4)-4} & 1\overset{?}=\sqrt{5(1)-4} \\ 4\overset{?}=\sqrt{20-4} & 1\overset{?}=\sqrt{5-4} \\ 4\overset{?}=\sqrt{16} & 1\overset{?}=\sqrt{1} \\ 4\overset{\checkmark}=4 & 1\overset{\checkmark}=1 .\end{array} Since both solutions satisfy the given equation, then the solution set of the equation $ z=\sqrt{5z-4} $ is $\left\{1,4\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.