Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 48

Answer

$r=\dfrac{5}{6}$

Work Step by Step

Squaring both sides of the given equation, $ r=\sqrt{\dfrac{20-19r}{6}} ,$ results to \begin{align*}\require{cancel} (r)^2&=\left(\sqrt{\dfrac{20-19r}{6}}\right)^2 \\\\ r^2&=\dfrac{20-19r}{6} .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*} 6\cdot r^2&=\dfrac{20-19r}{\cancel6}\cdot\cancel6 \\\\ 6r^2&=20-19r \\ 6r^2+19r-20&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (6r-5)(r+4)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 6r-5=0 & r+4=0 \\ 6r=5 & r=-4 \\\\ r=\dfrac{5}{6} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }r=\dfrac{5}{6}: & \text{If }r=-4 \\\\ \dfrac{5}{6}\overset{?}=\sqrt{\dfrac{20-19\left(\frac{5}{6}\right)}{6}} & -4\overset{?}=\sqrt{\dfrac{20-19(-4)}{6}} \\\\ \dfrac{5}{6}\overset{?}=\sqrt{\dfrac{20-\frac{95}{6}}{6}} & -4\ne\text{ some nonnegative number} \\\\ \dfrac{5}{6}\overset{?}=\sqrt{\dfrac{\frac{120}{6}-\frac{95}{6}}{6}} \\\\ \dfrac{5}{6}\overset{?}=\sqrt{\dfrac{\frac{25}{6}}{6}} \\\\ \dfrac{5}{6}\overset{?}=\sqrt{\dfrac{25}{36}} \\\\ \dfrac{5}{6}\overset{\checkmark}=\dfrac{5}{6} .\end{array} Since $r=-4$ does not satisfy the original equation, then the only solution of the equation $ r=\sqrt{\dfrac{20-19r}{6}} $ is $r=\dfrac{5}{6}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.