Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 41

Answer

$x=3$

Work Step by Step

Squaring both sides of the given equation, $ 2x=\sqrt{11x+3} ,$ results to \begin{align*}\require{cancel} (2x)^2&=\left(\sqrt{11x+3}\right)^2 \\ 4x^2&=11x+3 \\ 4x^2-11x-3&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (4x+1)(x-3)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 4x+1=0 & x-3=0 \\ 4x=-1 & x=3 \\\\ x=-\dfrac{1}{4} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=-\dfrac{1}{4}: & \text{If }x=3: \\\\ 2\left(-\dfrac{1}{4}\right)\overset{?}=\sqrt{11\left(-\dfrac{1}{4}\right)+3} & 2(3)\overset{?}=\sqrt{11(3)+3} \\\\ -\dfrac{1}{2}\overset{?}=\sqrt{-\dfrac{11}{4}+3} & 6\overset{?}=\sqrt{33+3} \\\\ -\dfrac{1}{2}\overset{?}=\sqrt{-\dfrac{11}{4}+\dfrac{12}{4}} & 6\overset{?}=\sqrt{36} \\\\ -\dfrac{1}{2}\overset{?}=\sqrt{\dfrac{1}{4}} & 6\overset{\checkmark}=6 \\\\ -\dfrac{1}{2}\ne\dfrac{1}{2} .\end{array} Since $x=-\dfrac{1}{4}$ does not satisfy the original equation, then the only solution of the equation $ 2x=\sqrt{11x+3} $ is $x=3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.