Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 63

Answer

$\left\{-64,27\right\}$

Work Step by Step

Let $z= r^{1/3} $. Then the given equation, $ r^{2/3}+r^{1/3}-12=0 ,$ is equivalent to \begin{align*} \left(r^{1/3}\right)^2+r^{1/3}-12=0 \\ z^2+z-12=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z+4)(z-3)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z+4=0 & z-3=0 \\ z=-4 & z=3 .\end{array} Since $z= r^{1/3} ,$ by back substitution, then \begin{array}{l|r} r^{1/3}=-4 & r^{1/3}=3 \\ \left(r^{1/3}\right)^3=(-4)^3 & \left(r^{1/3}\right)^3=(3)^3 \\ r=-64 & r=27 .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }r=-64: & \text{If }r=27 \\\\ (-64)^{2/3}+(-64)^{1/3}-12\overset{?}=0 & 27^{2/3}+27^{1/3}-12\overset{?}=0 \\ \left(\sqrt[3]{-64}\right)^2+\left(\sqrt[3]{-64}\right)^1-12\overset{?}=0 & \left(\sqrt[3]{27}\right)^2+\left(\sqrt[3]{27}\right)^1-12\overset{?}=0 \\ \left(-4\right)^2+\left(-4\right)^1-12\overset{?}=0 & \left(3\right)^2+\left(3\right)^1-12\overset{?}=0 \\ 16-4-12\overset{?}=0 & 9+3-12\overset{?}=0 \\ 0\overset{\checkmark}=0 & 0\overset{\checkmark}=0 .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ r^{2/3}+r^{1/3}-12=0 $ is $\left\{-64,27\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.