Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 59

Answer

$\left\{-\dfrac{16}{3}, -2\right\}$

Work Step by Step

Let $z= (m+4) $. Then the given equation, $ 3(m+4)^2-8=2(m+4) ,$ is equivalent to \begin{align*} 3z^2-8&=2z \\ 3z^2-2z-8&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-2)(3z+4)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-2=0 & 3z+4=0 \\ z=2 & 3z=-4 \\\\ & z=-\dfrac{4}{3} .\end{array} Since $z= (m+4) ,$ by back substitution, then \begin{array}{l|r} m+4=2 & m+4=-\dfrac{4}{3} \\\\ m=2-4 & m=-\dfrac{4}{3}-4 \\\\ m=-2 & m=-\dfrac{4}{3}-\dfrac{12}{3} \\\\ & m=-\dfrac{16}{3} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }m=-2: & \text{If }m=-\dfrac{16}{3} \\\\ 3(-2+4)^2-8\overset{?}=2(-2+4) & 3\left(-\dfrac{16}{3}+4\right)^2-8\overset{?}=2\left(-\dfrac{16}{3}+4\right) \\\\ 3(2)^2-8\overset{?}=2(2) & 3\left(-\dfrac{16}{3}+\dfrac{12}{3}\right)^2-8\overset{?}=2\left(-\dfrac{16}{3}+\dfrac{12}{3}\right) \\\\ 3(4)-8\overset{?}=4 & 3\left(-\dfrac{4}{3}\right)^2-8\overset{?}=2\left(-\dfrac{4}{3}\right) \\\\ 12-8\overset{?}=4 & 3\left(\dfrac{16}{9}\right)-8\overset{?}=-\dfrac{8}{3} \\\\ 4\overset{\checkmark}=4 & \dfrac{16}{3}-8\overset{?}=-\dfrac{8}{3} \\\\ & \dfrac{16}{3}-\dfrac{24}{3}\overset{?}=-\dfrac{8}{3} \\\\ & -\dfrac{8}{3}\overset{\checkmark}=-\dfrac{8}{3} .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ 3(m+4)^2-8=2(m+4) $ is $\left\{-\dfrac{16}{3}, -2\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.