Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 64

Answer

$\left\{-\dfrac{512}{27},27\right\}$

Work Step by Step

Let $z= x^{1/3} $. Then the given equation, $ 3x^{2/3}-x^{1/3}-24=0 ,$ is equivalent to \begin{align*} 3\left(x^{1/3}\right)^2-x^{1/3}-24&=0 \\ 3z^2-z-24&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-3)(3z+8)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-3=0 & 3z+8=0 \\ z=3 & 3z=-8 \\\\ & z=-\dfrac{8}{3} .\end{array} Since $z= x^{1/3} ,$ by back substitution, then \begin{array}{l|r} x^{1/3}=3 & x^{1/3}=-\dfrac{8}{3} \\\\ \left(x^{1/3}\right)^3=(3)^3 & \left(x^{1/3}\right)^3=\left(-\dfrac{8}{3}\right)^3 \\\\ x=27 & x=-\dfrac{512}{27} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=27: & \text{If }x=-\dfrac{512}{27} \\\\ 3(27)^{2/3}-(27)^{1/3}-24\overset{?}=0 & 3\left(-\dfrac{512}{27}\right)^{2/3}-\left(-\dfrac{512}{27}\right)^{1/3}-24\overset{?}=0 \\\\ 3\left(\sqrt[3]{27}\right)^2-\left(\sqrt[3]{27}\right)^1-24\overset{?}=0 & 3\left(\sqrt[3]{-\dfrac{512}{27}}\right)^2-\left(\sqrt[3]{-\dfrac{512}{27}}\right)^1-24\overset{?}=0 \\\\ 3\left(3\right)^2-\left(3\right)^1-24\overset{?}=0 & 3\left(-\dfrac{8}{3}\right)^2-\left(-\dfrac{8}{3}\right)^1-24\overset{?}=0 \\\\ 3\left(9\right)-3-24\overset{?}=0 & 3\left(\dfrac{64}{9}\right)+\dfrac{8}{3}-24\overset{?}=0 \\\\ 27-3-24\overset{?}=0 & \dfrac{64}{3}+\dfrac{8}{3}-24\overset{?}=0 \\\\ 0\overset{\checkmark}=0 & \dfrac{72}{3}-24\overset{?}=0 \\\\ & 24-24\overset{?}=0 \\ & 0\overset{\checkmark}=0 .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ 3x^{2/3}-x^{1/3}-24=0 $ is $\left\{-\dfrac{512}{27},27\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.