Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 55

Answer

$\left\{-2\sqrt{3},-2,2,2\sqrt{3},\right\}$

Work Step by Step

Using the properties of equality, the given expression, $ x^4+48=16x^2 ,$ is equivalent to \begin{align*} x^4-16x^2+48&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (x^2-4)(x^2-12)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} x^2-4=0 & x^2-12=0 \\ x^2=4 & x^2=12 \\ x=\pm\sqrt{4} & x=\pm\sqrt{12} \\ x=\pm2 & x=\pm\sqrt{4\cdot3} \\ & x=\pm2\sqrt{3} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=\pm2: & \text{If }x=\pm2\sqrt{3} \\\\ (\pm2)^4+48\overset{?}=16(\pm2)^2 & (\pm2\sqrt{3})^4+48\overset{?}=16(\pm2\sqrt{3})^2 \\ 16+48\overset{?}=16(4) & 16(9)+48\overset{?}=16(4\cdot3) \\ 64\overset{\checkmark}=64 & 144+48\overset{?}=16(12) \\ & 192\overset{\checkmark}=192 .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ 9x^4-25x^2+16=0 $ is $\left\{-2\sqrt{3},-2,2,2\sqrt{3},\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.