Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 68

Answer

$\left\{-\dfrac{4}{3},\dfrac{1}{2}\right\}$

Work Step by Step

Let $z= \dfrac{1}{2p+2} $. Then the given equation, $ 3-\dfrac{7}{2p+2}=\dfrac{6}{(2p+2)^2} ,$ is equivalent to \begin{align*}\require{cancel} 3-7\cdot\dfrac{1}{2p+2}&=6\cdot\dfrac{1}{(2p+2)^2} \\\\ 3-7z&=6z^2 \\ 0&=6z^2+7z-3 \\ 6z^2+7z-3&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (3z-1)(2z+3)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 3z-1=0 & 2z+3=0 \\ 3z=1 & 2z=-3 \\\\ z=\dfrac{1}{3} & z=-\dfrac{3}{2} .\end{array} Since $z= \dfrac{1}{2p+2} ,$ by back substitution, then \begin{array}{l|r} \dfrac{1}{2p+2}=\dfrac{1}{3} & \dfrac{1}{2p+2}=-\dfrac{3}{2} .\end{array} By cross-multiplication and the properties of equality, the equations above are equivalent to \begin{array}{l|r} 1(3)=1(2p+2) & 1(2)=(2p+2)(-3) \\ 3=2p+2 & 2=-6p-6 \\ 3-2=2p & 6p=-6-2 \\ 1=2p & 6p=-8 \\\\ \dfrac{1}{2}=p & p=-\dfrac{8}{6} \\\\ p=\dfrac{1}{2} & p=-\dfrac{4}{3} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }p=\dfrac{1}{2}: & \text{If }p=-\dfrac{4}{3} \\\\ 3-\dfrac{7}{2\left(\frac{1}{2}\right)+2}\overset{?}=\dfrac{6}{\left(2\left(\frac{1}{2}\right)+2\right)^2} & 3-\dfrac{7}{2\left(-\frac{4}{3}\right)+2}\overset{?}=\dfrac{6}{\left(2\left(-\frac{4}{3}\right)+2\right)^2} \\\\ 3-\dfrac{7}{1+2}\overset{?}=\dfrac{6}{\left(1+2\right)^2} & 3-\dfrac{7}{-\frac{8}{3}+2}\overset{?}=\dfrac{6}{\left(-\frac{8}{3}+2\right)^2} \\\\ 3-\dfrac{7}{3}\overset{?}=\dfrac{6}{\left(3\right)^2} & 3-\dfrac{7}{-\frac{8}{3}+\frac{6}{3}}\overset{?}=\dfrac{6}{\left(-\frac{8}{3}+\frac{6}{3}\right)^2} \\\\ \dfrac{9}{3}-\dfrac{7}{3}\overset{?}=\dfrac{6}{9}& 3-\dfrac{7}{-\frac{2}{3}}\overset{?}=\dfrac{6}{\left(-\frac{2}{3}\right)^2} \\\\ \dfrac{2}{3}\overset{?}=\dfrac{\cancelto26}{\cancelto39}& 3+\dfrac{21}{2}\overset{?}=\dfrac{6}{\frac{4}{9}} \\\\ \dfrac{2}{3}\overset{\checkmark}=\dfrac{2}{3}& \dfrac{6}{2}+\dfrac{21}{2}\overset{?}=\dfrac{54}{4} \\\\ & \dfrac{27}{2}\overset{?}=\dfrac{\cancelto{27}{54}}{\cancelto24} \\\\ & \dfrac{27}{2}\overset{\checkmark}=\dfrac{27}{2} .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ 3-\dfrac{7}{2p+2}=\dfrac{6}{(2p+2)^2} $ is $\left\{-\dfrac{4}{3},\dfrac{1}{2}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.