Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 75

Answer

$r=25$

Work Step by Step

Let $z= 1+\sqrt{r} $. Then the given equation, $ 2\left(1+\sqrt{r}\right)^2=13\left(1+\sqrt{r}\right)-6 ,$ is equivalent to \begin{align*} 2z^2&=13z-6 \\ 2z^2-13z+6=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-6)(2z-1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-6=0 & 2z-1=0 \\ z=6 & 2z=1 \\\\ & z=\dfrac{1}{2} .\end{array} Since $z=1+\sqrt{r}$, by back-substitution, \begin{array}{l|r} 1+\sqrt{r}=6 & 1+\sqrt{r}=\dfrac{1}{2} \\\\ \sqrt{r}=6-1 & \sqrt{r}=\dfrac{1}{2}-1 \\\\ \sqrt{r}=5 & \sqrt{r}=-\dfrac{1}{2} \\\\ \left(\sqrt{r}\right)^2=(5)^2 & \left(\sqrt{r}\right)^2=\left(-\dfrac{1}{2}\right)^2 \\\\ r=25 & r=\dfrac{1}{4} .\end{array} Checking by substituting the solutions in the given equation results to \begin{array}{l|r} \text{If }r=25: & \text{If }r=\dfrac{1}{4}: \\\\ 2\left(1+\sqrt{25}\right)^2\overset{?}=13\left(1+\sqrt{25}\right)-6 & 2\left(1+\sqrt{\dfrac{1}{4}}\right)^2\overset{?}=13\left(1+\sqrt{\dfrac{1}{4}}\right)-6 \\\\ 2\left(1+5\right)^2\overset{?}=13\left(1+5\right)-6 & 2\left(1+\dfrac{1}{2}\right)^2\overset{?}=13\left(1+\dfrac{1}{2}\right)-6 \\\\ 2\left(6\right)^2\overset{?}=13\left(6\right)-6 & 2\left(\dfrac{3}{2}\right)^2\overset{?}=13\left(\dfrac{3}{2}\right)-6 \\\\ 2\left(36\right)\overset{?}=78-6 & 2\left(\dfrac{9}{4}\right)\overset{?}=\dfrac{39}{2}-6 \\\\ 72\overset{\checkmark}=72 & \dfrac{9}{2}\overset{?}=\dfrac{39}{2}-\dfrac{12}{2} \\\\ & \dfrac{9}{2}\ne\dfrac{27}{2} .\end{array} Since $r=\dfrac{1}{4}$ does not satisfy the original equation then the only solution of the equation $ 2\left(1+\sqrt{r}\right)^2=13\left(1+\sqrt{r}\right)-6 $ is $r=25$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.