Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 49

Answer

$x=-2$

Work Step by Step

Squaring both sides of the given equation, $ -x=\sqrt{\dfrac{8-2x}{3}} ,$ results to \begin{align*}\require{cancel} (-x)^2&=\left(\sqrt{\dfrac{8-2x}{3}}\right)^2 \\\\ x^2&=\dfrac{8-2x}{3} .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*} 3\cdot x^2&=\dfrac{8-2x}{\cancel3}\cdot\cancel3 \\\\ 3x^2&=8-2x \\ 3x^2+2x-8&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (x+2)(3x-4)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} x+2=0 & 3x-4=0 \\ x=-2 & 3x=4 \\\\ & x=\dfrac{4}{3} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=-2: & \text{If }x=\dfrac{4}{3} \\\\ -(-2)\overset{?}=\sqrt{\dfrac{8-2(-2)}{3}} & -\dfrac{4}{3}\overset{?}=\sqrt{\dfrac{8-2\left(\frac{4}{3}\right)}{3}} \\\\ 2\overset{?}=\sqrt{\dfrac{8+4}{3}} & -\dfrac{4}{3}\ne\text{ some nonnegative number} \\\\ 2\overset{?}=\sqrt{\dfrac{12}{3}} \\\\ 2\overset{?}=\sqrt{4} \\ 2\overset{\checkmark}=2 .\end{array} Since $x=\dfrac{4}{3}$ does not satisfy the original equation, then the only solution of the equation $ -x=\sqrt{\dfrac{8-2x}{3}} $ is $x=-2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.