Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 57

Answer

$\left\{-6,-5\right\}$

Work Step by Step

Let $z= (x+3) $. Then the given equation, $ (x+3)^2+5(x+3)+6=0 ,$ is equivalent to \begin{align*} z^2+5z+6=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z+2)(z+3)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z+2=0 & z+3=0 \\ z=-2 & z=-3 .\end{array} Since $z= (x+3) ,$ by back substitution, then \begin{array}{l|r} x+3=-2 & x+3=-3 \\ x=-2-3 & x=-3-3 \\ x=-5 & x=-6 .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=-5: & \text{If }x=-6 \\\\ (-5+3)^2+5(-5+3)+6\overset{?}=0 & (-6+3)^2+5(-6+3)+6\overset{?}=0 \\ (-2)^2+5(-2)+6\overset{?}=0 & (-3)^2+5(-3)+6\overset{?}=0 \\ 4-10+6\overset{?}=0 & 9-15+6\overset{?}=0 \\ 0\overset{\checkmark}=0 & 0\overset{\checkmark}=0 .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ (x+3)^2+5(x+3)+6=0 $ is $\left\{-6,-5\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.