Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 42

Answer

$x=\dfrac{1}{2}$

Work Step by Step

Squaring both sides of the given equation, $ 4x=\sqrt{6x+1} ,$ results to \begin{align*}\require{cancel} (4x)^2&=\left(\sqrt{6x+1}\right)^2 \\ 16x^2&=6x+1 \\ 16x^2-6x-1&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (8x+1)(2x-1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 8x+1=0 & 2x-1=0 \\ 8x=-1 & 2x=1 \\\\ x=-\dfrac{1}{8} & x=\dfrac{1}{2} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=-\dfrac{1}{8}: & \text{If }x=\dfrac{1}{2}: \\\\ 4\left(-\dfrac{1}{8}\right)\overset{?}=\sqrt{6\left(-\dfrac{1}{8}\right)+1} & 4\left(\dfrac{1}{2}\right)\overset{?}=\sqrt{6\left(\dfrac{1}{2}\right)+1} \\\\ \cancelto14\left(-\dfrac{1}{\cancelto28}\right)\overset{?}=\sqrt{\cancelto36\left(-\dfrac{1}{\cancelto48}\right)+1} & \cancelto24\left(\dfrac{1}{\cancelto12}\right)\overset{?}=\sqrt{\cancelto36\left(\dfrac{1}{\cancelto12}\right)+1} \\\\ -\dfrac{1}{2}\overset{?}=\sqrt{-\dfrac{3}{4}+1} & 2\overset{?}=\sqrt{3+1} \\\\ -\dfrac{1}{2}\overset{?}=\sqrt{-\dfrac{3}{4}+\dfrac{4}{4}} & 2\overset{?}=\sqrt{4} \\\\ -\dfrac{1}{2}\overset{?}=\sqrt{\dfrac{1}{4}} & 2\overset{\checkmark}=2 \\\\ -\dfrac{1}{2}\ne\dfrac{1}{2} .\end{array} Since $x=-\dfrac{1}{8}$ does not satisfy the original equation, then the only solution of the equation $ 4x=\sqrt{6x+1} $ is $x=\dfrac{1}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.