Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 65

Answer

$\left\{-\dfrac{27}{8},-1,1,\dfrac{27}{8}\right\}$

Work Step by Step

Let $z= x^{2/3} $. Then the given equation, $ 4x^{4/3}-13x^{2/3}+9=0 ,$ is equivalent to \begin{align*} 4\left(x^{2/3}\right)^2-13x^{2/3}+9&=0 \\ 4z^2-13z+9&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-1)(4z-9)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-1=0 & 4z-9=0 \\ z=1 & 4z=9 \\\\ & z=\dfrac{9}{4} .\end{array} Since $z= x^{2/3} ,$ by back substitution, then \begin{array}{l|r} x^{2/3}=1 & x^{2/3}=\dfrac{9}{4} \\\\ \left(x^{\frac{2}{3}}\right)^3=(1)^3 & \left(x^{\frac{2}{3}}\right)^3=\left(\dfrac{9}{4}\right)^3 \\\\ x^2=1 & x^2=\dfrac{729}{64} \\\\ x=\pm\sqrt{1} & x=\pm\sqrt{\dfrac{729}{64}} \\\\ x=\pm1 & x=\pm\dfrac{27}{8} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=\pm1: & \text{If }x=\pm\dfrac{27}{8} \\\\ 4(\pm1)^{4/3}-13(\pm1)^{2/3}+9\overset{?}=0 & 4\left(\pm\dfrac{27}{8}\right)^{4/3}-13\left(\pm\dfrac{27}{8}\right)^{2/3}+9\overset{?}=0 \\\\ 4\left(\sqrt[3]{\pm1}\right)^4-13\left(\sqrt[3]{\pm1}\right)^2+9\overset{?}=0 & 4\left(\sqrt[3]{\pm\dfrac{27}{8}}\right)^4-13\left(\sqrt[3]{\pm\dfrac{27}{8}}\right)^2+9\overset{?}=0 \\\\ 4\left(\pm1\right)^4-13\left(\pm1\right)^2+9\overset{?}=0 & 4\left(\pm\dfrac{3}{2}\right)^4-13\left(\pm\dfrac{3}{2}\right)^2+9\overset{?}=0 \\\\ 4\left(1\right)-13\left(1\right)+9\overset{?}=0 & 4\left(\dfrac{81}{16}\right)-13\left(\dfrac{9}{4}\right)+9\overset{?}=0 \\\\ 4-13+9\overset{?}=0 & \dfrac{81}{4}-\dfrac{117}{4}+9\overset{?}=0 \\\\ 0\overset{\checkmark}=0 & -\dfrac{36}{4}+9\overset{?}=0 \\\\ & -9+9\overset{?}=0 \\ & 0\overset{\checkmark}=0 .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ 4x^{4/3}-13x^{2/3}+9=0 $ is $\left\{-\dfrac{27}{8},-1,1,\dfrac{27}{8}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.