Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 60

Answer

$\left\{-4,1\right\}$

Work Step by Step

Let $z= (t+5) $. Then the given equation, $ (t+5)^2+6=7(t+5) ,$ is equivalent to \begin{align*} z^2+6&=7z \\ z^2-7z+6&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (z-6)(z-1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} z-6=0 & z-1=0 \\ z=6 & z=1 .\end{array} Since $z= (t+5) ,$ by back substitution, then \begin{array}{l|r} t+5=6 & t+5=1 \\ t=6-5 & t=1-5 \\ t=1 & t=-4 .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }t=1: & \text{If }t=-4 \\\\ (1+5)^2+6\overset{?}=7(1+5) & (-4+5)^2+6\overset{?}=7(-4+5) \\ 6^2+6\overset{?}=7(6) & (1)^2+6\overset{?}=7(1) \\ 36+6\overset{?}=42 & 1+6\overset{?}=7 \\ 42\overset{\checkmark}=42 & 7\overset{\checkmark}=7 .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ (t+5)^2+6=7(t+5) $ is $\left\{-4,1\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.