Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 50

Answer

$x=-1$

Work Step by Step

Squaring both sides of the given equation, $ -x=\sqrt{\dfrac{3x+7}{4}} ,$ results to \begin{align*}\require{cancel} (-x)^2&=\left(\sqrt{\dfrac{3x+7}{4}}\right)^2 \\\\ x^2&=\dfrac{3x+7}{4} .\end{align*} Using the properties of equality, the equation above is equivalent to \begin{align*} 4\cdot x^2&=\dfrac{3x+7}{\cancel4}\cdot\cancel4 \\\\ 4x^2&=3x+7 \\ 4x^2-3x-7&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (x+1)(4x-7)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} x+1=0 & 4x-7=0 \\ x=-1 & 4x=7 \\\\ & x=\dfrac{7}{4} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=-1: & \text{If }x=\dfrac{7}{4} \\\\ -(-1)\overset{?}=\sqrt{\dfrac{3(-1)+7}{4}} & -\dfrac{7}{4}\overset{?}=\sqrt{\dfrac{3\left(\frac{7}{4}\right)+7}{4}} \\\\ 1\overset{?}=\sqrt{\dfrac{-3+7}{4}} & -\dfrac{7}{4}\overset{?}=\sqrt{\dfrac{\frac{21}{4}+7}{4}} \\\\ 1\overset{?}=\sqrt{\dfrac{4}{4}} & -\dfrac{7}{4}\overset{?}=\sqrt{\dfrac{\frac{21}{4}+\frac{28}{4}}{4}} \\\\ 1\overset{\checkmark}=1 & -\dfrac{7}{4}\overset{?}=\sqrt{\dfrac{\frac{49}{4}}{4}} \\\\ & -\dfrac{7}{4}\overset{?}=\sqrt{\dfrac{49}{16}} \\\\ & -\dfrac{7}{4}\ne\dfrac{7}{4} .\end{array} Since $x=\dfrac{7}{4}$ does not satisfy the original equation, then the only solution of the equation $ -x=\sqrt{\dfrac{3x+7}{4}} $ is $x=-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.