Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 46

Answer

$p=16$

Work Step by Step

Isolating the term with a radical, the given equation, $ p-2\sqrt{p}=8 ,$ is equivalent to \begin{align*} p-8=2\sqrt{p} .\end{align*} Squaring both sides, the equation above is equivalent to \begin{align*}\require{cancel} (p-8)^2&=\left(2\sqrt{p}\right)^2 \\ (p)^2+2(p)(-8)+(-8)^2&=4(p) \\ p^2-16p+64&=4p \\ p^2+(-16p-4p)+64&=0 \\ p^2-20p+64&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (p-16)(p-4)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} p-16=0 & p-4=0 \\ p=16 & p=4 .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }p=16: & \text{If }p=4 \\\\ 16-2\sqrt{16}\overset{?}=8 & 4-2\sqrt{4}\overset{?}=8 \\ 16-2(4)\overset{?}=8 & 4-2(2)\overset{?}=8 \\ 16-8\overset{?}=8 & 4-4\overset{?}=8 \\ 8\overset{\checkmark}=8 & 0\ne8 .\end{array} Since $p=4$ does not satisfy the original equation, then the only solution of the equation $ p-8=2\sqrt{p} $ is $p=16$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.