Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 69

Answer

$\left\{-\dfrac{1}{2},3\right\}$

Work Step by Step

Let $a= (z-1)^{-1} $. Then the given equation, $ 2-6(z-1)^{-2}=(z-1)^{-1} ,$ is equivalent to \begin{align*}\require{cancel} 2-6a^2&=a \\ 0&=6a^2+a-2 \\ 6a^2+a-2=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (2a-1)(3a+2)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 2a-1=0 & 3a+2=0 \\ 2a=1 & 3a=-2 \\\\ a=\dfrac{1}{2} & a=-\dfrac{2}{3} .\end{array} Since $a= (z-1)^{-1}=\dfrac{1}{z-1} ,$ by back substitution, then \begin{array}{l|r} \dfrac{1}{z-1}=\dfrac{1}{2} & \dfrac{1}{z-1}=-\dfrac{2}{3} .\end{array} By cross-multiplication and the properties of equality, the equations above are equivalent to \begin{array}{l|r} 1(2)=1(z-1) & 1(3)=-2(z-1) \\ 2=z-1 & 3=-2z+2 \\ 2+1=z & 2z=2-3 \\ 3=z & 2z=-1 \\\\ z=3 & z=-\dfrac{1}{2} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }z=3: & \text{If }z=-\dfrac{1}{2} \\\\ 2-6(3-1)^{-2}\overset{?}=(3-1)^{-1} & 2-6\left(-\frac{1}{2}-1\right)^{-2}\overset{?}=\left(-\frac{1}{2}-1\right)^{-1} \\\\ 2-6(2)^{-2}\overset{?}=(2)^{-1} & 2-6\left(-\frac{3}{2}\right)^{-2}\overset{?}=\left(-\frac{3}{2}\right)^{-1} \\\\ 2-\dfrac{6}{2^2}\overset{?}=\dfrac{1}{2^{1}} & 2-6\left(-\frac{2}{3}\right)^{2}\overset{?}=\left(-\frac{2}{3}\right)^{1} \\\\ 2-\dfrac{6}{4}\overset{?}=\dfrac{1}{2} & 2-6\left(\frac{4}{9}\right)\overset{?}=-\frac{2}{3} \\\\ 2-\dfrac{\cancelto36}{\cancelto24}\overset{?}=\dfrac{1}{2} & 2-\cancelto26\left(\frac{4}{\cancelto39}\right)\overset{?}=-\frac{2}{3} \\\\ \dfrac{4}{2}-\dfrac{3}{2}\overset{?}=\dfrac{1}{2} & 2-2\left(\frac{4}{3}\right)\overset{?}=-\frac{2}{3} \\\\ \dfrac{1}{2}\overset{\checkmark}=\dfrac{1}{2} & \dfrac{6}{3}-\dfrac{8}{3}\overset{?}=-\frac{2}{3} \\\\ & -\dfrac{2}{3}\overset{\checkmark}=-\frac{2}{3} .\end{array} Since all solutions satisfy the original equation, then the solution set of the equation $ 2-6(z-1)^{-2}=(z-1)^{-1} $ is $\left\{-\dfrac{1}{2},3\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.