Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 53

Answer

$\left\{-\dfrac{3}{2},-1,1,\dfrac{3}{2}\right\}$

Work Step by Step

Using factoring of trinomials, the given equation, $ 4q^4-13q^2+9=0 ,$ is equivalent to \begin{align*} (4q^2-9)(q^2-1)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 4q^2-9=0 & q^2-1=0 \\ 4q^2=9 & q^2=1 \\\\ q^2=\dfrac{9}{4} & q=\pm\sqrt{1} \\\\ q=\pm\sqrt{\dfrac{9}{4}} & q=\pm1 \\\\ q=\pm\dfrac{3}{2} .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }q=\pm\dfrac{3}{2}: & \text{If }q=\pm1 \\\\ 4\left(\pm\dfrac{3}{2}\right)^4-13\left(\pm\dfrac{3}{2}\right)^2+9\overset{?}=0 & 4(\pm1)^4-13(\pm1)^2+9\overset{?}=0=0 \\\\ 4\left(\dfrac{81}{16}\right)-13\left(\dfrac{9}{4}\right)+9\overset{?}=0 & 4(1)-13(1)+9\overset{?}=0=0 \\\\ \dfrac{81}{4}-\dfrac{117}{4}+9\overset{?}=0 & 4-13+9\overset{?}=0=0 \\\\ \dfrac{81}{4}-\dfrac{117}{4}+\dfrac{36}{4}\overset{?}=0 & 0\overset{\checkmark}=0=0 \\\\ \dfrac{0}{4}\overset{?}=0 \\\\ 0\overset{\checkmark}=0 .\end{array} Since both solutions satisfy the original equation, then the solution set of the equation $ 4q^4-13q^2+9=0 $ is $\left\{-\dfrac{3}{2},-1,1,\dfrac{3}{2}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.