Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Section 8.3 - Equations Quadratic in Form - 8.3 Exercises - Page 530: 43

Answer

$x=\dfrac{8}{9}$

Work Step by Step

Squaring both sides of the given equation, $ 3x=\sqrt{16-10x} ,$ results to \begin{align*}\require{cancel} (3x)^2&=\left(\sqrt{16-10x}\right)^2 \\ 9x^2&=16-10x \\ 9x^2+10x-16&=0 .\end{align*} Using factoring of trinomials, the equation above is equivalent to \begin{align*} (9x-8)(x+2)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{array}{l|r} 9x-8=0 & x+2=0 \\ 9x=8 & x=-2 \\\\ x=\dfrac{8}{9} & x=-2 .\end{array} Checking the solutions by substitution in the given equation results to \begin{array}{l|r} \text{If }x=\dfrac{8}{9}: & \text{If }x=-2: \\\\ 3\left(\dfrac{8}{9}\right)\overset{?}=\sqrt{16-10\left(\dfrac{8}{9}\right)} & 3(-2)\overset{?}=\sqrt{16-10(-2)} \\\\ \cancelto13\left(\dfrac{8}{\cancelto39}\right)\overset{?}=\sqrt{16-\dfrac{80}{9}} & -6\overset{?}=\sqrt{16+20} \\\\ \dfrac{8}{3}\overset{?}=\sqrt{\dfrac{144}{9}-\dfrac{80}{9}} & -6\overset{?}=\sqrt{36} \\\\ \dfrac{8}{3}\overset{?}=\sqrt{\dfrac{64}{9}} & -6\ne6 \\\\ \dfrac{8}{3}\overset{\checkmark}=\dfrac{8}{3} .\end{array} Since $x=-2$ does not satisfy the original equation, then the only solution of the equation $ 3x=\sqrt{16-10x} $ is $x=\dfrac{8}{9}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.