University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 4 - Section 4.8 - Antiderivatives - Exercises - Page 272: 69


$-\cos \theta +\theta +C$

Work Step by Step

Given: $\int (\cos \theta \tan \theta) d\theta + \int (\cos \theta \sec \theta) d\theta $ Thus, $\int (\cos \theta \tan \theta) d\theta + \int (\cos \theta \sec \theta) d\theta=\int (\cos \theta (\dfrac{\sin \theta}{\cos \theta}) d\theta + \int \cos \theta (\dfrac{1}{\cos \theta}) d\theta=-\cos \theta +\theta +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.