Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 9

Answer

$ a.\quad$ critical points at $x==-2,0,2$ $b.\quad $f is increasing on $(-\infty, -2)\cup(2, \infty)$, decreasing on $(-2,0)\cup(0,2)$. $ c.\quad$ local maximum at $x=-2,$ local minimum at $x=2$

Work Step by Step

$(a)$ $f'$ is defined everywhere except at $x=0\qquad $... critical point $f'(x)=0$ for $x=\pm 2\qquad $... critical points Critical points at $x=-2,0,2$ $(b)$ $\left[\begin{array}{lllll} & (-\infty,-2) & (-2,0) & (0,2) & (2,\infty)\\ \text{test point, }t & -4 & -1 & 1 & 4\\ \text{evaluate }f'(t) & 0.75 & -3 & -3 & 0.75\\ \text{sign of }f' & + & - & - & +\\ \text{behavior of }f(x) & \nearrow & \searrow_{....} & {}^{....}\searrow & \nearrow \end{array}\right]$ (the "$\searrow_{....},\ {}^{....}\searrow$" indicate that $f'$ is undefined at the border ) $f':\quad +++\stackrel{-2}{|}- - - \stackrel{0}{)(}- - - \stackrel{2}{|}+++$ f is increasing on $(-\infty, -2)\cup(2, \infty)$, decreasing on $(-2,0)\cup(0,2)$. $(c)$ From the table, we see that f has: - local maximum at $x=-2,$ - local minimum at $x=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.