Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 7

Answer

$a.\quad$ critical points at $x=-2,0,1$ $b.\quad $increasing on $(-\infty,-2)\cup(1, \infty)$, decreasing on $(-2,0)\cup(0,1)$. $c.\quad$ local minimum at $x=1$

Work Step by Step

$(a)$ $f'$ is defined everywhere except at $x=-2\qquad $... critical point $f'(x)=0$ for $x=0,1\qquad $... critical points Critical points at $x=-2,0,1$ $(b)$ $\left[\begin{array}{cccccc} & (-\infty,-2) & (-2,0) & (0,1) & (1,\infty)\\ \text{test point} & -3 & -1 & 0.5 & 2\\ \text{evaluate }f' & 36 & -2 & -0.05 & 1\\ \text{sign of }f' & + & - & - & +\\ \text{behavior of }f(x) & \nearrow^{...} & {}^{...}\searrow & \searrow & \nearrow \end{array}\right]$ (the "$\nearrow^{ \ ... },\ {}^{...}\searrow$" indicate that $f'$ is undefined at the border ) f is increasing on $(-\infty,-2)\cup(1, \infty)$, decreasing on $(-2,0)\cup(0,1)$. $(c)$ From the table, we see that f has a local minimum at $x=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.