Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 28

Answer

(a) Increasing on $(0,1)\cup(2, \infty)$. Decreasing on $(-\infty, 0)\cup(1,2)$ (b) No absolute maximum. Local maximum: $(1,1)$ No absolute minimum. Local minima: $(0,0)$ and $(2,0)$

Work Step by Step

$g$ is defined everywhere. $ g'(x)=4x^{3}-12x^{2}+8x=4x(x^{2}-3x+2)=8x(x-1)(x-2),\quad$ defined everywhere. $g'(0)=0$ for $x=0,1$ and $ 2\quad$... critical points. $g(0)=0,\qquad g(1)=1,\qquad g(2)=0.$ The end behavior of a polynomial is dictated by the leading term, so $ g(x)\rightarrow +\infty$ on the far left and $ g(x)\rightarrow +\infty$ on the far right. Using testpoints in the intervals between critical points, $g'(-1)=-24 \lt 0$ $g'(0.5)=1.5 \gt 0$ $g'(1.5)=-1.5 \lt 0$ $g'(3)=24 \gt 0$ Tabular view: $\begin{array}{l} g':\\ \\ \\ g: \end{array} \begin{array}{lllllllllll} -\infty & & 0 & & 1 & & 2 & & \infty & & \\ ( & -- & | & ++ & | & -- & | & ++ & ) & & \\ & & & & & & & & & & \\ +\infty & \searrow & & \nearrow & 1 & \searrow & & \nearrow & +\infty & & \\ & & 0 & & & & 0 & & & & \\ & & & & & & & & & & \end{array}$ (a) Increasing on $(0,1)\cup(2, \infty)$. Decreasing on $(-\infty, 0)\cup(1,2)$ (b) No absolute maximum. Local maximum: $(1,1)$ No absolute minimum. Local minima: $(0,0)$ and $(2,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.