Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 2

Answer

$ a.\quad$ critical points at $x=-2$ and $x=1$. $b.\quad $ increasing on $(-\infty, -2)$ and $(1, \infty)$, decreasing on $(-2,1)$. $c.\quad $local maximum at $x=-2$ and a local minimum at $x=1$

Work Step by Step

$(a)$ $f'$ is defined everywhere. $f'(x)=0$ for $x=1,-2\qquad $... critical points at $x=-2$ and $x=1$. $(b)$ $\left[\begin{array}{ccccccc} & -\infty & & -2 & & 1 & & \infty\\ \text{test point} & & -3 & | & 0 & | & 2 & \\ \text{evaluate }f' & & (-4)(-1) & | & (-1)(2) & | & (2)(4) & \\ \text{sign of }f' & & + & | & - & | & + & \\ \text{behavior of }f(x) & & \nearrow & max & \searrow & min & \nearrow & \end{array}\right]$ f is increasing on $(-\infty, -2)$ and $(1, \infty)$ , decreasing on $(-2,1)$. $(c)$ From the table, we see that f has: - a local maximum at $x=0$ and - a local minimum at $x=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.