Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 23

Answer

(a) Increasing on $(0, \displaystyle \frac{1}{2})$ Decreasing on $(-\displaystyle \infty, 0)\cup(\frac{1}{2}, \infty)$ (b) No absolute maximum. Local maximum at $(\displaystyle \frac{1}{2},\frac{1}{4})$. No absolute minimum. Local minimum at $(0,0)$.

Work Step by Step

$f$ is defined everywhere. $ f'(\theta)=6\theta-12\theta^{2}=6\theta(1-2\theta),\quad$ defined everywhere. $f'(\theta)=0$ for $\theta=0$ and $\displaystyle \frac{1}{2}$ Critical points: $\theta=0$ and $\displaystyle \frac{1}{2}$. $f(0)=0,\displaystyle \qquad f(\frac{1}{2})=\frac{1}{4}.$ Using testpoints in the intervals between critical points, $f'(-1) \lt 0$ $f'(1/4) \gt 0$ $f'(1) \lt 0$ $ \begin{array}{l} f':\\ \\ \\ f:\\ \end{array} \quad \begin{array}{ccccccccccc} -\infty& &0 & &\displaystyle \frac{1}{2} & &\displaystyle \infty \\ {(} &-- &| &++ &| & -- &) \\ \hline (+\displaystyle \infty)&\displaystyle \searrow & & \displaystyle \nearrow & \displaystyle \frac{1}{4} & \displaystyle \searrow & \displaystyle \\ & & 0 & & & & (-\infty) \end{array}$ (a) Increasing on $(0, \displaystyle \frac{1}{2})$ Decreasing on $(-\displaystyle \infty, 0)\cup(\frac{1}{2}, \infty)$ (b) No absolute maximum. Local maximum at $(\displaystyle \frac{1}{2},\frac{1}{4})$. No absolute minimum. Local minimum at $(0,0)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.