Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 21

Answer

(a) Increasing on $(0, \displaystyle \frac{4}{3})$ Decreasing on $(-\displaystyle \infty, 0)\cup(\frac{4}{3}, \infty)$ (b) No absolute maximum. Local maximum at $(\displaystyle \frac{4}{3},\frac{47}{4})$. No absolute minimum. Local minimum at $(0,0)$.

Work Step by Step

$h $ is defined everywhere. $ h'(x)=-3x^{2}+4x=x(4-3x),\quad$ defined everywhere. $h'(x)=0$ for $x=0,\displaystyle \ \frac{4}{3}$ Critical points at $x=0,\displaystyle \ \frac{4}{3}$ Calculate $g'$ at test points in the intervals created by the critical points: $(-\infty, 0),\qquad h'(-1)=-7$, $(0,\displaystyle \frac{4}{3}),\qquad h'(1)=+1$, $(\displaystyle \frac{4}{3}, \infty),\qquad h'(2)=-4$, Evaluate g at the critical point; observe the behavior at the far ends of the graph $\displaystyle \lim_{x\rightarrow-\infty}h(x)=+\infty,\quad $ $ h(0)=0,\displaystyle \quad h(\frac{4}{3})=\frac{32}{27}\quad$ $\displaystyle \lim_{t\rightarrow\infty}h(x)=-\infty$ Tabular view: $ \begin{array}{l} h':\\ \\ \\ h:\\ \end{array} \quad \begin{array}{ccccccccccc} -\displaystyle \infty& &0& &\displaystyle \frac{4}{3}& &\displaystyle \infty \\ {(} &-- &| &++ &|& -- &) \\ \hline (+\displaystyle \infty)&\displaystyle \searrow & & \displaystyle \nearrow &\displaystyle \frac{32}{27}& \displaystyle \searrow & \displaystyle \\ & &0 & & & & (-\infty) \end{array}$ (a) Increasing on $(0, \displaystyle \frac{4}{3})$ Decreasing on $(-\displaystyle \infty, 0)\cup(\frac{4}{3}, \infty)$ (b) No absolute maximum. Local maximum at $(\displaystyle \frac{4}{3},\frac{47}{4})$. No absolute minimum. Local minimum at $(0,0)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.