Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 37

Answer

(a) Increasing on $(-2, 0)\cup(0, \infty)$ Decreasing on $(-\infty, -2)$ (b) No absolute maximum. No local maximum. Absolute minimum: $(-2, -6\sqrt[3]{2})$. No other local minima.

Work Step by Step

$f(x)=x^{4/3}+8x^{1/3}$ $f$ is defined everywhere $f'(x)=\displaystyle \frac{4}{3}x^{1/3}+ \displaystyle \frac{8}{3}x^{-2/3}=\frac{4}{3x^{2/3}}(x+2)$ $f'$ not defined at $ x=0$: critical point. $f'(x)=0$ for $x=-2$: critical point. $ f(-2)=-6\sqrt[3]{2}\approx-7.56\qquad f(0)=0.$ Using testpoints in the intervals between critical points, $f'(-8)=-2\lt 0$ $f'(-1)=1.333... \gt 0$ $f'(8)=3.333... \gt 0$ Tabular view: $\begin{array}{l} f':\\ \\ \\ f: \end{array} \begin{array}{lllllll} -\infty & & -2 & & 0 & & \infty\\ ( & -- & | & ++ & )( & ++ & )\\ & & & & & & \\ & \searrow & & \nearrow & 0 & \nearrow & \\ & & -6\sqrt[3]{2} & & & & \\ & & & & & & \end{array} $ (a) Increasing on $(-2, 0)\cup(0, \infty)$ Decreasing on $(-\infty, -2)$ (b) No absolute maximum. No local maximum. Absolute minimum: $(-2, -6\sqrt[3]{2})$. No other local minima.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.