Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 1

Answer

$ a.\quad$ critical points at x=0 and x=1 $b.\quad $increasing on $(-\infty, 0)$ and $(1, \infty)$ , decreasing on $(0,1)$. $c.\quad $local maximum at $x=0$ and a local minimum at $x=1$

Work Step by Step

$(a)$ $f'$ is defined everywhere. $f'(x)=0$ for $x=0,1\qquad $... critical points at x=0 and x=1. $(b)$ $\left[\begin{array}{cccccc} & -\infty & & 0 & & 1 & & \infty\\\\ \text{test point} & & -1 & | & 0.5 & | & 2 & \\ \text{evaluate }f' & & +2 & | & -0.25 & | & +2 & \\ \text{sign of }f' & & + & | & - & | & + & \\ \text{behavior of }f(x) & & \nearrow & max & \searrow & min & \nearrow & \end{array}\right]$ f is increasing on $(-\infty, 0)$ and $(1, \infty)$ , decreasing on $(0,1)$. $(c)$ From the table, we see that f has: - a local maximum at $x=0$ and - a local minimum at $x=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.