Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 27

Answer

(a) Increasing on $(-2,0)\cup(2, \infty)$. Decreasing on $(-\infty, -2)\cup(0,2)$ (b) No absolute maximum. Local maximum: $(0,16)$ No absolute minimum. Local minima: $(-2,0)$ and $(2,0)$

Work Step by Step

$f$ is defined everywhere. $ f'(x)=4x^{3}-16x=4x(x^{2}-4),\quad$ defined everywhere. $f'(0)=0$ for $x=-2,0$ and $ 2\quad$... critical points. $f(-2)=0,\qquad f(0)=16,\qquad f(2)=0.$ The end behavior of a polynomial is dictated by the leading term, so $ f(x)\rightarrow +\infty$ on the far left and $ f(x)\rightarrow +\infty$ on the far right. Using testpoints in the intervals between critical points, $f'(-3) \lt 0$ $f'(-1) \gt 0$ $f'(1) \lt 0$ $f'(3) \gt 0$ Tabular view: $\begin{array}{l} f':\\ \\ \\ f: \end{array} \begin{array}{lllllllllll} -\infty & & -2 & & 0 & & 2 & & \infty & & \\ ( & -- & | & ++ & | & -- & | & ++ & ) & & \\ & & & & & & & & & & \\ +\infty & \searrow & & \nearrow & 16 & \searrow & & \nearrow & +\infty & & \\ & & 0 & & & & 0 & & & & \\ & & & & & & & & & & \end{array}$ (a) Increasing on $(-2,0)\cup(2, \infty)$. Decreasing on $(-\infty, -2)\cup(0,2)$ (b) No absolute maximum. Local maximum: $(0,16)$ No absolute minimum. Local minima: $(-2,0)$ and $(2,0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.