Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 20

Answer

(a) Increasing on $(-\displaystyle \infty, \frac{3}{2})$ Decreasing on $(\displaystyle \frac{3}{2}, \infty).$ (b) Absolute maximum at $(\displaystyle \frac{3}{2},\frac{47}{4})$. No other local maxima No absolute minimum. No local minima.

Work Step by Step

$g $ is defined everywhere. $ g'(t)=-6t+9,$ defined everywhere. $g'(t)=0$ for $t=\displaystyle \frac{3}{2}$ Critical point at $t=\displaystyle \frac{3}{2} .$ Calculate $g'$ at test points in the intervals created by the critical points: $(-\displaystyle \infty, \frac{3}{2}),\qquad g'(0)=9$, $(\displaystyle \frac{3}{2}, \infty),\qquad g'(2)=-3$, Evaluate g at the critical poin; observe the behavior at far ends of the graph $\displaystyle \lim_{t\rightarrow-\infty}g(t)=-\infty,\quad $ $ g(\displaystyle \frac{3}{2})=\frac{47}{4},\quad$ $\displaystyle \lim_{t\rightarrow\infty}g(t)=-\infty$ Tabular view: $ \begin{array}{l} g':\\ \\ \\ g:\\ \end{array} \quad \begin{array}{ccccccccccc} -\displaystyle \infty& &\displaystyle \frac{3}{2}& &\displaystyle \infty \\ {(} &++ &| &--&) \\ \hline &\displaystyle \nearrow &\displaystyle \frac{47}{4}&\displaystyle \searrow & \displaystyle \\ (-\infty)& & & & (-\infty) \end{array}$ (a) Increasing on $(-\displaystyle \infty, \frac{3}{2})$ Decreasing on $(\displaystyle \frac{3}{2}, \infty).$ (b) Absolute maximum at $(\displaystyle \frac{3}{2},\frac{47}{4})$. No other local maxima No absolute minimum. No local minima.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.