Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 4: Applications of Derivatives - Section 4.3 - Monotonic Functions and the First Derivative Test - Exercises 4.3 - Page 203: 3

Answer

$ a.\quad$ critical points at $x=-2$ and $x=1$. $b.\quad $increasing on $(-2,1)$ and $(1, \infty)$ , decreasing on $(-\infty, -2)$ $c.\quad $local minimum at $x=-2$ and no local maximum.

Work Step by Step

$(a)$ $f'$ is defined everywhere. $f'(x)=0$ for $x=1,-2\qquad $... critical points at $x=-2$ and $x=1$. $(b)$ $\left[\begin{array}{ccccccc} & -\infty & & -2 & & 1 & & \infty\\ \text{test point} & & -3 & | & 0 & | & 2 & \\ \text{evaluate }f' & & (-4)^{2}(-1) & | & (-1)^{2}(2) & | & (2)^{2}(4) & \\ \text{sign of }f' & & - & | & + & | & + & \\ \text{behavior of }f(x) & & \searrow & min & \nearrow & & \nearrow & \end{array}\right]$ f is increasing on $(-2,1)$ and $(1, \infty)$ , decreasing on $(-\infty, -2)$ $(c)$ From the table, we see that f has: - a local maximum at $x=0$ and - a local minimum at $x=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.